Abstract
Coal blends are commonly used in thermal power plants and oxy-fuel combustion also attracts great concerns recently. However, little has been done on oxy-fuel combustion of coal blends. In this paper, combustion tests are performed in a drop tube furnace for various coal blends under O2/CO2 mixtures, which are also reproduced numerically. Strong combustion interactions between the parent coals in a blend are observed. The ignition of the low-volatile coal is promoted due to the rapid combustion of the volatiles from the high-volatile coal. However, the char burnout of the low-volatile coal is compromised due to the rapid O2 consumption by the large amount of volatiles. The interactions under oxy-fuel conditions are more sensitive to the excess O2, inlet oxidizer temperature and coal particle size. 1) The increase in the excess O2 tends to weaken the combustion interactions, in which both the ignition promotion and burnout inhibition effects on the low-volatile coal become less apparent. 2) The increase in the inlet oxidizer temperature further promotes the ignition of the low-volatile coal whereas weakens the burnout inhibition of the low-volatile coal. 3) The effects of reducing particle size on the combustion interactions are similar to those of increasing inlet oxidizer temperature. Since biomass often contains a high volatile content, the findings may shed light on the synergistic effects in oxy-fuel co-combustion of biomass and coal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.