Abstract

The evolution of a flame in a reaction–advection–diffusion combustion system in the presence of chaotic stirring by an unsteady laminar fluid flow is considered. Two distinct regimes are found as the stirring rate is increased. When the reaction is slow (or fast stirring) localised temperature perturbations decay—the flame is quenched by the flow. If the reaction is fast (or slow stirring) a localised ignition leads to a stationary flame with complex filamental structure. The width of the filaments depends on the reaction and stirring rates. This problem is investigated numerically in 2D for an open flow system formed by two alternately opened point-vortex-sinks and the results are compared with previous results [Physica D 176 (1–2) (2003) 67–81] from a 1D ‘mean-strain’ model for the transverse profile of the flame filaments. The system is studied for different Lewis and Damköhler numbers, with a critical Damköhler number being found, dependent on the Lewis number, for the transition from trivial to combustion states. A comparison between time-periodic and steady flow regimes shows that chaotic motion of the fluid elements in the unsteady flow significantly enhances the combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.