Abstract
Micro-gas turbines (MGT) are small-scale independent and reliable distributed generation systems that offer potential for saving energy and reducing carbon monoxide (CO) emissions. They are expected to play a vital role in future energy supplies for remote locations with or without grid connections. In this paper, a design and development of a combustion chamber for micro-gas turbine was performed by SOLID-WORKS and computational fluid dynamics (CFD) ANSYS-FLUENT simulation software. Different chamber geometries were used to simulate with species transport and non-premixed combustion models to determine the optimum chamber design. The best chamber geometry adopted after optimization was 50mm flame holder diameter, 60cm chamber height, having 4 holes of 6, 8 and10 mm with dead zone between the combustion zone and dilution zone. A two-stage MGT was developed based on vehicular turbochargers to test the chamber. The experimental test of the chamber with liquefied petroleum gas (LPG) fuel resulted in a stable combustion with CO emission below 100ppm and turbine inlet temperature below 900°C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have