Abstract

Left ventricle (LV) segmentation of cardiac magnetic resonance (MR) images is essential for evaluating cardiac function parameters and diagnosing cardiovascular diseases (CVDs). Accurate LV segmentation remains a challenge because of the large differences in cardiac structures in different research subjects. In this work, a network based on an encoder–decoder architecture for automatic LV segmentation of short-axis cardiac MR images is proposed. It combines UNet 3+ and Transformer to jointly predict the segmentation masks and signed distance maps (SDM). UNet 3+ can extract coarse-grained semantics and fine-grained details from full scales, while a Transformer is used to extract global features from cardiac MR images. It solves the problem of low segmentation accuracy caused by blurred LV edge information. Meanwhile, the SDM provides a shape-aware representation for segmentation. The performance of the proposed network is validated on the 2018 MICCAI Left Ventricle Segmentation Challenge dataset. The five-fold cross-validation evaluation was performed on 145 clinical subjects, and the average dice metric, Jaccard coefficient, accuracy, and positive predictive value reached 0.908, 0.834, 0.979, and 0.903, respectively, showing a better performance than that of other mainstream ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call