Abstract

Segmentation of the left ventricle (LV) is very important in the assessment of cardiac functional parameters. The aim of this study is to develop a novel and robust algorithm which can improve the accuracy of automatic LV segmentation on short-axis cardiac magnetic resonance images (MRI). The database used in this study consists of 45 cases obtained from the Sunnybrook Health Sciences Centre. The 45 cases contain 12 ischemic heart failures, 12 non-ischemic heart failures, 12 LV hypertrophies, and 9 normal cases. Three key techniques are developed in this segmentation algorithm: 1) topological stable-state thresholding method is proposed to refine the endocardial contour, 2) an edge map with non-maxima gradient suppression approach, and 3) a region-restricted technique that is proposed to improve the dynamic programming to derive the epicardial boundary. The validation experiments were performed on a pool of data sets of 45 cases. For both endo- and epicardial contours of our results, percentage of good contours is about 91%, the average perpendicular distance is about 2 mm, and the overlapping dice metric is about 0.91. The regression and determination coefficient for the experts and our proposed method on the ejection fraction is 1.05 and 0.9048, respectively; they are 0.98 and 0.8221 for LV mass. An automatic method using topological stable-state thresholding and region restricted dynamic programming has been proposed to segment left ventricle in short-axis cardiac MRI. Evaluation results indicate that the proposed segmentation method can improve the accuracy and robust of left ventricle segmentation. The proposed segmentation approach shows the better performance and has great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.