Abstract
The combination of translation memories (TMs) and statistical machine translation (SMT) has been demonstrated to be beneficial. In this paper, we present a combination approach which integrates TMs into SMT by using sparse features extracted at run-time during decoding. These features can be used on both phrase-based SMT and syntax-based SMT. We conducted experiments on a publicly available English---French data set and an English---Spanish industrial data set. Our experimental results show that these features significantly improve our phrase-based and syntax-based SMT baselines on both language pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.