Abstract
Layer-by-layer (LbL) self-assembly of polymer coatings is a bottom-up fabrication technique with broad applicability across a wide range of materials and applications that require control over interfacial properties. While most LbL coatings are chemically uniform in directions both tangent and perpendicular to their substrate, control over the properties of surface coatings as a function of space can enhance their function. To contribute to this rapidly advancing field, our group has focused on the top-down spatiotemporal control possible with photochemically reactive LbL coatings, harnessed through charge-shifting polyelectrolytes enabled by photocleavable ester pendants. The photolysis of the photocleavable esters degrades LbL films containing these polyelectrolytes. The chemical structures of the photocleavable groups dictate the wavelengths responsible for disrupting these coatings, ranging from ultraviolet to near-infrared in our work. In addition, spatially segregating reactive groups into "compartments" within LbL films has enabled us to fabricate reactive free-standing polymer films and multiheight photopatterned coatings. Overall, by combining bottom-up and top-down approaches, photoreactive LbL films enable precise control over the interfacial properties of polymer and composite coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.