Abstract
Solar disinfection (SODIS) of urban wastewater can be a suitable technology for improving the microbiological quality of reclaimed water as a complement to other extensive and environmentally friendly technologies such as microalgae biotreatment. The objective of this work is to evaluate the feasibility of incorporating the SODIS technology at the end of a pilot scale urban wastewater treatment plant (WWTP) where the processes are based on microalgae biotechnology and comprising three Upflow Anaerobic Sludge Blanket (UASB, 20m3 each one) reactor, six High Rate Algal Ponds (HRAP, 32m2 each one), and a Dissolved Air Flotation (DAF, 1m3) unit. E. coli concentration was monitored at the effluent of the different units (UASB, HRAP, DAF) of the pilot WWTP. The efficiency of the SODIS process was studied for the inactivation of three of the commonly employed indicator microorganisms (Escherichia coli, Enterococcus spp. and Clostridium perfringens) using a compound parabolic collector (CPC) for five months under various conditions of irradiance and temperature.E. coli and Enterococcus spp. were more effectively disinfected by the SODIS unit (2.9 and 2.5 logarithms of reduction on average, respectively) than by the HRAP (2 and 1.1) or the DAF (0.9 and 0.1). On the contrary, the DAF technology achieved better reduction rates of C. perfringens (1.7) than the SODIS (0.9) and the HRAP (0.1). No regrowth of any microorganisms was detected during dark storage after the SODIS treatment.Incorporating a SODIS unit after the non-conventional WWTP processes substantially increases the possibilities for reuse of the treated water after receiving a cumulative UV radiation dose of 25W·h/m2 (50min of normalized time of solar illumination). The surface requirement of the SODIS equipment would be 3.5 times smaller than the HRAP's surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.