Abstract

The spatial ecology of rare, migratory oceanic animals is difficult to study directly. Where incremental tissues are available, their chemical composition can provide valuable indirect observations of movement and diet. Interpreting the chemical record in incremental tissues can be highly uncertain, however, as multiple mechanisms interact to produce the observed data. Simulation modeling is one approach for considering alternative hypotheses in ecology and can be used to consider the relative likelihood of obtaining an observed record under different combinations of ecological and environmental processes. Here we show how a simulation modeling approach can help to infer movement behaviour based on stable carbon isotope profiles measured in incremental baleen tissues of a blue whale (Balaenoptera musculus). The life history of this particular specimen, which stranded in 1891 in the UK, was selected as a case study due to its cultural significance as part of a permanent display at the Natural History Museum, London. We specifically tested whether measured variations in stable isotope compositions across the analysed baleen plate were more consistent with residency or latitudinal migrations. The measured isotopic record was most closely reproduced with a period of residency in sub-tropical waters for at least a full year followed by three repeated annual migrations between sub-tropical and high latitude regions. The latitudinal migration cycle was interrupted in the year prior to stranding, potentially implying pregnancy and weaning, but isotopic data alone cannot test this hypothesis. Simulation methods can help reveal movement information coded in the biochemical compositions of incremental tissues such as those archived in historic collections, and provides context and inferences that are useful for retrospective studies of animal movement, especially where other sources of individual movement data are sparse or challenging to validate.

Highlights

  • Migratory species pose a particular challenge for conservation practitioners because their effective conservation relies on protection at many, often distant, sites (Runge et al, 2014)

  • We tested whether the isotopic variations observed across 6–7 years of growth of a baleen plate in a single blue whale in the northeast Atlantic could be better simulated by agent-based models coding for year round residency or latitudinal migration

  • We suggest that the seasonal latitudinal migrations inferred during Hope’s behavioural phase two are likely to be a common movement pattern for north Atlantic blue whales, but the inference of sustained residency in sub-tropical waters might suggest plasticity in individual movement behaviours

Read more

Summary

Introduction

Migratory species pose a particular challenge for conservation practitioners because their effective conservation relies on protection at many, often distant, sites (Runge et al, 2014). Identifying threats to migratory species, understanding species responses to global change and developing effective conservation measures all require information on the movements of individual animals over multiple years, ideally for both historic and present-day populations. With the development of electronic tagging technology, studies of the distributions of animals have been supplemented by detailed information about the movement of individuals (Holdo & Roach, 2013), providing unprecedented levels of detail regarding individual movement behaviours and potential environmental drivers for movement. Data on individual-level, multi-annual movements remain scarce, especially for dispersed, wide-ranging and long-lived marine species such as baleen whales (Mysticeti; Bailey et al, 2009; Hall-Aspland, Rogers & Canfield, 2005; Ryan et al, 2013)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.