Abstract
Simulation is considered as one of the most practical tools to estimate manufacturing system performance, but it is slow in its execution. Analytical models are generally available to provide fast, but biased, estimates of the system performance. These two approaches are commonly used distinctly in a sequential approach, or one as alternative to the other, for assessing manufacturing system performance. This article proposes a method to combine simulation experiments with analytical results in a single performance evaluation model. The method is based on kernel regression and allows considering more than one analytical methods. A high-fidelity model is combined with low-fidelity models for manufacturing system performance evaluation. Multiple area-based low-fidelity models can be considered for the prediction. The numerical results show that the proposed method is able to identify the reliability of low-fidelity models in different areas and provide estimates with higher accuracy. Comparison with alternative approaches shows that the method is more accurate in a studied manufacturing application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.