Abstract
Clustering techniques have a strong influence on the performance achieved by Radial Basis Function (RBF) networks. This article compares the performance achieved by RBF networks using seven different clustering techniques. For such, different sizes of RBF networks are trained and tested using an Automatic Target Recognition data set. The performances of these RBF networks using each clustering technique are compared and analyzed. This article also evaluates how the performance can be improved by combining RBF networks, training with different clustering techniques, in committees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.