Abstract

Mutant selective drugs targeting the inactive, GDP-bound form of KRASG12C have been approved for use in lung cancer, but resistance develops rapidly. Here we use an inhibitor, (RMC-4998) that targets RASG12C in its active, GTP-bound form, to treat KRAS mutant lung cancer in various immune competent mouse models. RAS pathway reactivation after RMC-4998 treatment could be delayed using combined treatment with a SHP2 inhibitor, which not only impacts tumour cell RAS signalling but also remodels the tumour microenvironment to be less immunosuppressive. In an immune inflamed model, RAS and SHP2 inhibitors in combination drive durable responses by suppressing tumour relapse and inducing development of immune memory. In an immune excluded model, combined RAS and SHP2 inhibition sensitises tumours to immune checkpoint blockade, leading to efficient tumour immune rejection. These preclinical results demonstrate the potential of the combination of RAS(ON) G12C-selective inhibitors with SHP2 inhibitors to sensitize tumours to immune checkpoint blockade.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.