Abstract

AbstractIn this paper, we propose a novel decomposition approach (named PBGS) for stochastic mixed‐integer programming (SMIP) problems, which is inspired by the combination of penalty‐based Lagrangian and block Gauss–Seidel methods. The PBGS method is developed such that the inherent decomposable structure that SMIP problems present can be exploited in a computationally efficient manner. The performance of the proposed method is compared with the progressive hedging (PH) method, which also can be viewed as a Lagrangian‐based method for obtaining solutions for SMIP problems. Numerical experiments performed using instances from the literature illustrate the efficiency of the proposed method in terms of computational performance and solution quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.