Abstract

We apply feature-extraction and machine learning methods to multiple sources of contrast (acetic acid, Lugol's iodine and green light) from the white Pocket Colposcope, a low-cost point of care colposcope for cervical cancer screening. We combine features from the sources of contrast and analyze diagnostic improvements with addition of each contrast. We find that overall AUC increases with additional contrast agents compared to using only one source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.