Abstract

The demands for accurate positioning and navigation applications in complex indoor environments such as emergency call positioning, fire-fighting services, and rescue operations are increasing continuously. Indoor positioning approaches apply different types of sensors to increase the accuracy of the user’s position. Among these technologies, Bluetooth Low Energy (BLE) appeared as a popular alternative due to its low cost and energy efficiency. However, BLE faces challenges related to Received Signal Strength Indicator (RSSI) fluctuations caused by human body shadowing. This work presents a method to compensate RSSI values by applying Artificial Neural Network (ANN) algorithms to RSSI measurements from three BLE advertising channels and a wearable camera as an additional source of information for the presence or absence of human obstacles. The resulting improved RSSI values are then converted into ranges using path loss models, and trilateration is applied to obtain indoor localization. The proposed artificial system provides significantly better localization solutions than fingerprinting or trilateration using uncorrected RSSI values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.