Abstract
In this paper, for the first time, a triple-mode scan using electromagnetic waves, in the shape of millimeter waves, and ultrasound waves, to obtain B-mode and quasistatic elastography images of a phantom of human breast tissues is shown. A homogeneous phantom composed of nontoxic, low-cost and easy-to-handle materials (i.e. water, oil, gelatin and dishwashing liquid) was produced, with an inclusion made of water and agar. These are intended to mimic, in terms of dielectric properties, healthy adipose tissues and neoplastic tissues, respectively. A millimeter-wave imaging prototype was used to scan the phantom, by implementing a linear synthetic array of 24 antennas with a central working frequency of 30 GHz. The phantom was then scanned using an ultrasound research system and a linear-array probe at 7 MHz, acquiring both B-mode and quasi-static elastography images. The millimeter-wave system showed an excellent ability to detect the target placed at about 1.4 cm depth. Also in the ultrasound case the inclusion was correctly detected as a hypoechoic, stiff mass. This first experimental findings show that millimeter-wave, ultrasound and elasticity imaging can be used jointly to detect tumor-like targets into phantoms mimicking healthy breast tissues. Thus, they provide promising preliminary results to further study the application of this multimodal approach in all those critical cases in which such complementary imaging techniques could be exploited for an enhanced tumor detection, based on tissues dielectric, acoustic and elastic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.