Abstract

Thermal infrared (TIR) satellite imagery collected by multispectral scanners is important to map land surface temperature on a global scale. However, the TIR spectral bands are typically available in coarser spatial resolution than other multispectral bands of shorter wavelengths. Therefore, the spatial resolution of the derived land surface temperature (LST) is limited to around 100 m. This constrains the applications of such thermal satellite sensors in which finer detail of LST spatial pattern is relevant, especially in an urban environment where the land cover structure is complex. Among the missions deployed on the Earth’s orbit, NASA’s TIRS sensor onboard Landsat 8 and Landsat 9, and ASTER onboard Terra provide the highest spatial resolution of the thermal band. On the other hand, ESA’s Sentinel-2 multispectral imagery is collected at a higher spatial resolution of 10 m with a 5-day temporal resolution, but scanning in the TIR band is not available. This study makes use of the known relationship between LST and land cover metrics, such as the normalized difference vegetation index (NDVI), built-up index (NDBI), and water index (NDWI). We define a multiple linear regression model based on the spectral indices and LST derived from Landsat 8 data to inform the same model in which the equivalent spectral indices derived from Sentinel-2 are used to predict LST at 10 m resolution. Results of this approach are demonstrated in a case study for Košice city, Slovakia, where the multiple linear model based on Landsat 8 data achieved an R2 of 0.642. The correlation between the observed Landsat 8 LST and predicted LST from Sentinel-2 aggregated to the same resolution as the observed LST was high (r = 0.91). Despite the imperfections of the downscaling model, the derived LST at 10 m resolution provides a better perception of the LST field that can be easily associated with land cover features present in urban environment. The LST downscaling approach was implemented into Google Earth Engine. It provides a user-friendly online application that can be used for any city or urban region for generating a more realistic spatial pattern of LST than can be directly observed by contemporary Earth observation satellites. The tool aids in urban decision making and planning on how to mitigate overheating of cities to improve the life quality of their citizens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.