Abstract
The epidemiological research benefits from an accurate characterization of both spatial and temporal variability of exposure to air pollution. This work aims at proposing a method to combine the high spatial resolution of Land Use Regression (LUR) models with the high temporal resolution of fixed site monitoring data, to model spatiotemporal variability of NO2 over a wide geographical area in Northern Italy. We developed seasonal LUR models to reconstruct the spatial distribution of a scaling factor that relates local concentrations to those measured at two reference central sites, one for the northern flat area and one for the southern mountain area. We calculated the daily average concentrations at 19 locations spread over the study areas as the product of the local scaling factor and the reference central site concentrations. We evaluated model performance comparing modeled and measured NO2 data. LUR model's R2 ranges from 0.76 to 0.92. The main predictors refers substantially to traffic, industrial land use, buildings volume and altitude a.s.l. The model's performance in reproducing measured concentrations was satisfactory. The temporal variability of concentrations was well captured: Spearman correlation between model and measures was >0.7 for almost all sites. Model's average absolute errors were in the order of 10μgm−3. The model for the southern area tends to overestimate measured concentrations. Our modeling framework was able to reproduce spatiotemporal differences in NO2 concentrations. This kind of model is less data-intensive than usual regional atmospheric models and it may be very helpful to assess population exposure within studies in which individual relevant exposure occurs along periods of days or months.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.