Abstract

The present work deals with the optimization of an inhibitor of PqsD, an enzyme essential for Pseudomonas aeruginosa quorum sensing apparatus. Molecular docking studies, supported by biophysical methods (surface plasmon resonance, isothermal titration calorimetry, saturation transfer difference NMR), were used to illuminate the binding mode of the 5-aryl-ureidothiophene-2-carboxylic acids. Enabled to make profound predictions, structure-based optimization led to increased inhibitory potency. Finally a covalent inhibitor was obtained. Binding to the active site was confirmed by LC-ESI-MS and MALDI-TOF-MS experiments. Following this rational approach, potent PqsD inhibitors were efficiently developed within a short period of time. This example shows that a combination and careful application of in silico and biophysical methods represents a powerful complement to cocrystallography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.