Abstract
When longitudinal studies are performed to investigate the growth of traits in children, the measurement tool being used to quantify the trait may need to change as the subjects' age throughout the study. Changing the measurement tool at some point in the longitudinal study makes the analysis of that growth challenging which, in turn, makes it difficult to determine what other factors influence the growth rate. We developed a Bayesian hierarchical modeling framework that relates the growth curves per individual for each of the different measurement tools and allows for covariates to influence the shapes of the curves by borrowing strength across curves. The method is motivated by and demonstrated by speech perception outcome measurements of children who were implanted with cochlear implants. Researchers are interested in assessing the impact of age at implantation and comparing the growth rates of children who are implanted under the age of two versus those implanted between the ages of two and four.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.