Abstract

We developed a Bayesian hierarchical modeling framework to establish a short-term forecasting model of particulate cyanobacterial toxin concentrations in Western Lake Erie using chlorophyll a concentration as the predictor. The model evolves over time with additional data to reflect the changing dynamics of cyanobacterial toxin production. Specifically, parameters of the empirical relationship between the cyanobacterial toxin microcystin and chlorophyll a concentrations are allowed to vary annually and seasonally under a hierarchical framework. As such, the model updated using the most recent sampling data is suited to provide short-term forecasts. The reduced model predictive uncertainty makes the model a viable tool for risk assessment. Using data from the long-term Western Lake Erie harmful algal bloom monitoring program (2008–2018), we illustrate the model-building and model-updating process and the application of the model for short-term risk assessment. The modeling process demonstrates the use of the Bayesian hierarchical modeling framework for developing informative priors in Bayesian modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.