Abstract

AbstractRegions of provenance for forest reproductive materials are the basis for wise use of forest resources in a changing climate. In this work a modelling framework is proposed for silver fir (Abies alba Mill.) in Italy where genetic clusters described by nuclear microsatellites were combined with high-resolution climatic data. When the genetic clusters were too large or had an uncertain ecological niche expression, an additional subregion division-was evaluated according to a climatic assessment. Subsequently each genecological group (Region of Provenance, RoP) was projected in geographic space separately using species distribution modelling (SDM) procedure under current (1991–2020) and a future climate scenario derived from the 6th assessment report for the period 2041–2070. The final division into nine RoPs was able to explain 77.41% of the total climatic variance, a good trade-off between statistical significance and practical usability. The modelling steps then showed a large degree of ecological overlap between RoPs with some of them occurring in similar ecological environments but characterized by a different genetic structure. When projected at the continental scale, the Italian RoPs were found to be suitable for almost all the current European range of silver fir, with potential expansion in Nordic countries in the future, beyond the current distribution range. The study showed that the combination of genetic and ecological data can be a robust way to proceed in areas where a strong genetic differentiation between populations occurs, such as in Italy. New markers such as SNPs can then be used to detect adaptive traits and drive the selection of provenances for common garden experiments in areas where the SDM modelscurrently extrapolate potential sites outside the current natural range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call