Abstract
We present a formalism of a neural network encoding bonded interactions in molecules. This intramolecular encoding is consistent with the models of intermolecular interactions previously designed by this group. Variants of the encoding fed into a corresponding neural network may be used to economically improve the representation of torsional degrees of freedom in any force field. We test the accuracy of the reproduction of the ab initio potential energy surface on a set of conformations of two dipeptides, methyl-capped ALA and ASP, in several scenarios. The encoding, either alone or in conjunction with an analytical potential, improves agreement with ab initio energies that are on par with those of other neural network-based potentials. Using the encoding and neural nets in tandem with an analytical model places the agreements firmly within "chemical accuracy" of ±0.5 kcal/mol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.