Abstract

Principal components analysis (PCA) is a popular linear feature extractor, and widely used in signal processing, face recognition, etc. However, axes of the lower-dimensional space, i.e., principal components, are a set of new variables carrying no clear physical meanings. Thus we propose unsupervised feature selection algorithms based on eigenvectors analysis to identify critical original features for principal component. The presented algorithms are based on k-nearest neighbor rule to find the predominant row components and eight new measures are proposed to compute the correlation between row components in transformation matrix. Experiments are conducted on benchmark data sets and facial image data sets for gender classification to show their superiorities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.