Abstract

Principal components analysis (PCA) is an important approach to unsupervised dimensionality reduction. However, principal components (PCs) are a set of new variables carrying no clear physical meanings and still require all the original variables. To deal with this problem, the PC dominant feature (PCDF) is defined. Then, feature selection using them is considered and a new algorithm for determining such PC dominant features is proposed. Experimental results show that using the principal components as the basis the new algorithm can find a good feature subset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.