Abstract

Recent studies on language processing indicate that language cognition is better understood if assumed to be supported by a distributed intelligent processing system enrolling neurons located all over the cortex, in contrast to reductionism that proposes to localize cognitive functions to specific cortical structures. Here, brain activity was recorded using electroencephalogram while volunteers were listening or reading small texts and had to select pictures that translate meaning of these texts. Several techniques for EEG analysis were used to show this distributed character of neuronal enrollment associated with the comprehension of oral and written descriptive texts. Low Resolution Tomography identified the many different sets (s i) of neurons activated in several distinct cortical areas by text understanding. Linear correlation was used to calculate the information H(e i) provided by each electrode of the 10/20 system about the identified s i. H(e i) Principal Component Analysis (PCA) was used to study the temporal and spatial activation of these sources s i. This analysis evidenced 4 different patterns of H(e i) covariation that are generated by neurons located at different cortical locations. These results clearly show that the distributed character of language processing is clearly evidenced by combining available EEG technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.