Abstract
Using a novel liquid chromatography-tandem mass spectrometry method with large volume direct injection and quantitation via isotope dilution, we evaluated the presence of 55 organic micropollutants in wastewater effluents, and locations within the Bow River and Elbow River watersheds in and around the city of Calgary, Alberta, Canada. In addition to establishing baseline micropollutant data for water utility operations, our study aimed to enhance our understanding of micropollutant behavior in the urban water cycle, assess the contributions of three wastewater treatment plants (WWTPs) to downstream receiving waters, explain the potential causes of total estrogenicity measured using the yeast-estrogen screen assay (YES), and prioritize a subset of substances for continuous monitoring. With data spanning 48 months and 95 river km, our results indicate the extensive persistence of metformin (antidiabetic), seasonality of N,N‑diethyl-m-toluamide (DEET, insect repellant), O-desmethylvenlafaxine (antidepressant metabolite), and sulfamethoxazole (antibiotic) in source waters, and sporadic detections of a well-known perfluoroalkyl substance (PFOA). The seasonality of pharmaceuticals at the sentinel downstream monitoring site appeared to coincide with river dilution while that of DEET was likely attributable to peak usage during the warmer months. Steroidal estrogens were rarely detected in wastewater effluents although total estrogenicity via YES was evident, suggesting the presence of less potent but more abundant non-steroidal estrogens (e.g., flame retardants, bisphenols, and phthalates). A conservative mass balance analysis suggests that the largest WWTP (serving a population of >1 million) consistently contributed the highest load of micropollutants, with the exception of metformin, which appeared to be influenced by a smaller WWTP (serving 115,000) that operates a different activated sludge process. We consider metformin, sucralose, diclofenac, and venlafaxine as more effective conservative tracers of wastewater pollution due to their notably higher concentrations and persistence in the Bow River compared to carbamazepine and caffeine, respectively. Finally, hierarchical clustering revealed a close association between E. coli and caffeine, supporting the use of caffeine as an indicator of short-term, untreated anthropogenic inputs. Overall, this study yields valuable insights on the presence, behavior, and sources of organic micropollutants in the urban water cycle and identifies indicators of anthropogenic impacts that are useful for prioritizing future monitoring campaigns in Calgary and elsewhere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.