Abstract

The spread of nearly zero-energy buildings (nZEB) currently reflects the European Commission’s first policy step in fighting climate change through the construction sector. This paper analyses the design criteria and thermodynamic behaviour of an nZEB building in a Mediterranean climate and how its various properties affect its final energy consumption. The case study is a single-family dwelling of 309 m2 located in Mesagne, a small city in South Italy (Apulia, BR). Using DesignBuilder software, a dynamic simulation of the overall building-plant system performance estimated the building’s hygrothermal comfort and the energy consumption of air conditioning. Monitoring of in-field energy consumption and production validated the building performance simulation model and evaluated its performance gap. Subsequently, a parametric analysis of various scenarios assessed the impact on total energy consumption of different plant system configurations and a bioclimatic criterion adopted in the building: one without earth-to-air heat exchanger, one without heat recovery and recirculation and one without sunscreens. This research shows how a passive building design combined with the use of an efficient plant system can easily meet the nZEB requirements with high performance in terms of energy consumption and indoor thermal comfort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.