Abstract

Growth modeling has long played an important role in ecology, conservation and management of many species. However, adopting a statistical framework that includes both temporal and individual variability in the growth dynamics has proven challenging. In this paper, we use a Bayesian state space framework (BSSF) to estimate parameters of a discrete time model from a mark-recapture data set of age-1 juvenile Atlantic salmon. We use a Gaussian process (GP) based approach to model variation in seasonal growth potential. In addition, we use auxiliary information on the food environment as prior knowledge of seasonal fluctuations in growth. Parameters for the GP prior and measurement error variances were fixed to speed convergence. Posterior estimates of model parameters were relatively insensitive to these choices. Our model captures the seasonal growth dynamics of juvenile Atlantic salmon as evidenced by close agreement between observed and predicted lengths (r2=0.98). In addition, the relatively narrow confidence intervals indicated significant learning in the parameters of interest. Finally, our model approach was able to accurately recover missing data points. Although this model was applied to a mark-recapture dataset of Atlantic salmon, the generality of the approach should make it applicable to a wide variety of size trajectory datasets, and thus, provides a useful tool to estimate individual and temporal variability in growth from datasets with repeated measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.