Abstract

Sensors based on in vivo measurements of photosynthetic pigments fluorescence enable real-time phytoplankton monitoring with high spatial and temporal resolution. A combination of chlorophyll a (CHL) and phycocyanin (PC) fluorescence sensors was used for phytoplankton quantification and differentiation in two small water bodies, Koseze Pond and pond in Hotinja vas. The high correlation of CHL and PC fluorescence signals with biovolume was confirmed during the two-year monitoring in anatural pond environment in spite of a seasonal succession of the phytoplankton. Additionally, disturbances of the sensors were investigated. Water bodies containing predominantly algae yielded false positive signals of the PC sensor, which reached up to 1% of the intensity of the CHL signal. Similarly, underestimated counts of cyanobacteria measured with CHL fluorescence sensor can be adjusted using PC fluorescence sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.