Abstract

Structural Health Monitoring of composite structures is one of the significant challenges faced by the aerospace industry. A combined two-level damage identification viz damage detection and localization is performed in this paper for a composite panel using ultrasonic guided waves. A novel physical knowledge-assisted machine learning technique is proposed in which domain knowledge and expert supervision is utilized to assist the learning process. Two supervised learning-based convolutional neural networks are trained for damage detection (binary classification) and localization (multi-class classification) on an experimental benchmark dataset. The performance of the trained models is evaluated using loss curve, accuracy, confusion matrix, and receiver-operating characteristics curve. It is observed that incorporating physical knowledge helps networks perform better than a direct deep learning approach. In this work, a combined damage identification strategy is proposed for a real-time application. In this strategy, the damage detection model works in an outer-loop and predicts the state of the structure (undamaged or damaged), whereas an inner-loop predicts the location of the damage only if the outer-loop detects damage. It is seen that the proposed technique offers advantages in terms of accuracy (above 99% for both detection and localization), computational time (prediction time per signal in milliseconds), sensor optimization, in-situ monitoring, and robustness towards the noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.