Abstract
. The [Pt(tbtrpy)(X)][TCNQ] (X = OH or SH) complexes form sandwich stacks with nitrile acceptors leading to extended-chain supramolecular assemblies, tbtrpy = 4,4′,4″-tert-Bu3-2,2′:6′,2″-terpyridine. Calculations with the extended Hückel tight-binding (EHTB) method are performed upon crystalline {[Pt (tbtrpy)(X)][TCNQ]}∞ species to analyze their electronic structure and consequent properties, TCNQ = 7,7,8,8-tetracyanoquinodimethane. The donor/acceptor extended chains in the solid state are predicted to exhibit metallic behavior with a large contribution from π and π* bands of TCNQ to the valence and conduction bands, respectively. Moreover, the valence band moves upward (i.e., to a less negative energy) for X = SH as compared to X = OH. Density functional theory (DFT) calculations suggest that this is due to large thiolate character in the HOMO of the square-planar donor complex, which also supports the experimental assignment of the electronic absorption bands and redox potentials. Calculations of infrared (νCN bands of TCNQ) and structural (CC bond lengths within TCNQ) data explain the metallic behavior of the stacks in terms of charge delocalization, leading to fractionally-charged species of the form [Pt(tbtrpy)X](1+δ)+[TCNQ](1+δ)- with δ > 0 and a greater δ value for X = SH vs OH.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have