Abstract

The purpose of this test program is to understand the changes and degradation of the space solar array panel components, including its electrostatic discharge (ESD) mitigation design features in their integrated form, after multiple years (up to 15) of simulated Earth geosynchronous (GEO) space environment. A set of multijunction GaAs/Ge solar array test coupons was subjected to five-year increments of combined environmental exposure tests. These tests consisted of the following: simulated ultraviolet (UV) radiation, ESD, electron/proton particle radiation, thermal cycling, and simulated ion thruster exposures. The solar radiation simulation was produced using a mercury-xenon lamp with wavelengths in the UV spectrum ranging from 230 to 400 nm. The ESD test was performed in the inverted-gradient mode using a low-energy electron (3-6 keV) beam exposure. The ESD test also included a simulated panel coverglass flashover for the primary arc event. The electron/proton radiation exposure included 1.0-MeV electrons, 100-keV electrons, and 40-keV protons. Thermal cycling included simulated transient Earth eclipse for satellites in geosynchronous orbit. With the increasing use of ion thruster engines on many satellites, the combined environmental exposure test also included ion thruster exposure to determine the impact on solar array performance, as well as the ion thruster interaction to ESD events. Before and after each increment of combined environmental exposures, the coupons underwent visual inspection using high power magnification and electrical tests that included characterization by large-area pulse solar simulator, dark I -V, insulation resistance, and electroluminescence. This paper discusses the test objective, test methodologies, and preliminary results after five and ten years of simulated combined environmental exposure tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call