Abstract

For catalytic process intensification, a series of open cell foams (OCFs) made of silicon carbide (SiC) and zirconia (Zir) with pore density of 30 ppi coated with 3 wt% PdO/Co3O4 as catalyst were combined together and tested toward methane oxidation in lean conditions. In each combination, the SiC OCF was positioned in the reactor on the inlet side of the reactant gases followed by the Zir OCF. The reactor was fed at different weight hourly space velocities (WHSV, 30 and 90 NL h−1 gcat−1) and inlet methane concentrations (0.5 and 1 vol%). The best results are obtained with the combination where two supports of same length but with different thermal conductivity (higher at the inlet of the reactor, SiC, and lower at the outlet, Zir) are used in series. For all OCF combinations, mass transfer effects were evaluated using the characteristic resistances (kinetic, internal and external mass transfer). The external and internal heat transfer effects were analyzed using the Mears and Anderson criteria. Furthermore, a comparison in terms of volumetric heat transfer coefficient and heats of removal/reaction was performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.