Abstract
Reparameterization-based toolpath generation methods are usually adopted for machining triangular meshes, trimmed surfaces and compound surfaces. The quality of the reparameterization has an important effect on that of the surface. In this paper, a combined reparameterization procedure is introduced to generate an optimal mapping between the designed surface and a specified planar circular region with relatively less distortion both in length and in angle. Then, for five-axis sculptured surface machining the mathematical model of spiral guide path with maximum path interval is constructed in the circular region. Cutter contact paths are obtained by inversely mapping the guide path onto the designed surface. Under constraints of gouging and collision, continuous and optimal cutter orientations are subsequently calculated. Finally, the results of simulation and experiment of the machining process are given to illustrate the feasibility and applicability of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have