Abstract

The integration of Renewable Energy Sources (RESs) into distribution networks has increased in recent years due to numerous advantages. However, the RESs are intermittent and uncertain therefore may cause various limitations such as high lines loading and large voltage deviations, especially during high generation and low demand periods. Thus, this leads to an upper limit for the integrated capacity of RESs into the network, entitled Hosting Capacity (HC). In this paper, the complementarity of wind-PV along with the Demand Flexibility Program (DFP) are utilized for alleviating the limitations and increasing the HC in a hybrid AC/DC network. Moreover, an important feature of the AC/DC network, i.e., reactive control of Voltage Source Converters (VSCs) is investigated for increasing the HC. Additionally, a tradeoff is made between two conflicting objectives, i.e., HC and energy losses, which will be increased due to an excessive increase of the HC. Generally speaking, the paper proposes a multi-objective, multi-source, and multi-period extended optimal linear power flow model for simultaneously increasing the HC and decreasing the energy losses, utilizing stochastic programming for managing uncertainties. The simulation results show the accuracy and efficiency of the proposed formulation from various perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call