Abstract
Heterogeneous catalysts for the low temperature NH3-SCR of NOx can be strongly deactivated due to the accumulation of specific compounds deriving from an upstream desulphurization unit, such as a Sea Water Scrubber. In this work, we set out to investigate the specific role of K+ and of its counter-ion (Cl− or NO3−) on the combined poisoning effect induced on the catalytic features of a MnOx/TiO2 system. Poisoning of the catalyst was performed ex situ by impregnation with two target loadings of each K salt, followed by a mild thermal treatment at 250°C, corresponding to the maximum operating temperature of the SCR system. Fresh and poisoned catalysts were characterized by means of ICP-MS, BET, H2-TPR, NH3-Adsorption, NH3-Temperature Programmed Desorption-Reaction and in situ DRIFT and the impact of poisoning was assessed and compared for the NH3-SCR of NO as well as for the NH3-SCO (Selective Catalytic Oxidation) reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.