Abstract
In this paper, a technique is proposed to segment skin lesions from dermoscopic images through a combination of watershed transform and wavelet filters. In our technique, eight types of wavelet filters such as Daubechies and bi-orthogonal filters were applied before watershed transform. The resulting image was then classified into two classes: background and foreground. As watershed transform generated many spurious regions on the background, morphological post-processing was conducted. The post-processing split and merged spurious regions depending on a set of predefined criteria. As a result, a binary image was obtained and a boundary around the lesion was drawn. Next, the automatic boundary was compared with the manually delineated boundary by medical experts on 70 images with different types of skin lesions. We have obtained the highest accuracy of 94.61% using watershed transform with level 2 bi-orthogonal 3.3 wavelet filter. Thus, the proposed method has effectively achieved segmentation of the skin lesions, as shown in this paper.KeywordsSegmentationdermoscopic imageswatersheds transformwavelets transformregion merging
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.