Abstract
Melanoma is the deadliest type of human skin cancer. However, it is curable if diagnosed in an early stage. Recently, computer aided diagnosis (CAD) systems have drawn much interests. Segmentation is a crucial step of a CAD system. There are different types of skin lesions having high similarities in terms of color, shape, size and appearance. Most available works focus on a binary segmentation. Due to the huge variety of skin lesions and high similarities between different types of lesions, multi-class segmentation is still a challenging task. Here, we propose a method based on joint dictionary learning for multi-class segmentation of dermoscopic images. The key idea is based on combining data from different feature spaces to build a more informative structure. We consider training data from two different spaces. Then, two dictionaries are jointly learned using the K-SVD algorithm. The final segmentation is accomplished by a graph-cut method based on both the topological information of lesions and the learned dictionaries. We evaluate our proposed method on the ISIC 2107 dataset to segment three classes of lesions. Our method achieves better results, specially for challenging skin lesions, compared to the only available method for multi-class segmentation of dermoscopic images. We also evaluate the performance of our method for binary segmentation and lesion diagnosis and compared the results with the other state-of-the-art methods. Experimental results show the efficiency and effectiveness of the proposed method in producing results that are more reliable for clinical applications, even using limited amount of training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.