Abstract

This paper obtains a combined optical solitary wave solution that is modeled by nonlinear Chen–Lee–Liu equation (NCLE) which arises in the context of temporal pulses along optical fibers associated with the self-steepening nonlinearity using the complex envelope function ansatz. The novel combined solitary wave describes bright and dark solitary wave properties in the same expression. The intensity and the nonlinear phase shift of the combined solitary wave solution are reported. Moreover, the Lie point symmetry generators or vector fields of a system of partial differential equations (PDEs) which is acquired by transforming the NCLE to a real and imaginary parts are derived. It is observed that the obtained system is nonlinearly self-adjoint with an explicit form of a differential substitution satisfying the nonlinear self-adjoint condition. Then we use these facts to establish a set of conservation laws (Cls) for the system using the general Cls theorem. Numerical simulation and physical interpretations of the obtained results are demonstrated with interesting figures showing the meaning of the acquired results. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the NCLE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.