Abstract

In this article the high-temperature behavior of a cylindrical lithium iron phosphate/graphite lithium-ion cell is investigated numerically and experimentally by means of differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), and external short circuit test (ESC). For the simulations a multi-physics multi-scale (1D+1D+1D) model is used. Assuming a two-step electro-/thermochemical SEI formation mechanism, the model is able to qualitatively reproduce experimental data at temperatures up to approx. 200 °C. Model assumptions and parameters could be evaluated via comparison to experimental results, where the three types of experiments (DSC, ARC, ESC) show complementary sensitivities towards model parameters. The results underline that elevated-temperature experiments can be used to identify parameters of the multi-physics model, which then can be used to understand and interpret high-temperature behavior. The resulting model is able to describe nominal charge/discharge operation behavior, long-term calendaric aging behavior, and short-term high-temperature behavior during extreme events, demonstrating the descriptive and predictive capabilities of physicochemical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.