Abstract
Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to study the thermal behaviour of a commercially available lithium-ion cell. Both the complete cell (pouch type, 2 Ah) and its electrode materials, respectively, were investigated. As positive electrode material a blend system consisting of NCM (=Li[Ni0.33Co0.33Mn0.33]O2) and LMO (=LiMn2O4) with a weight ratio of 4:1 was identified. The main exothermic behaviour is dominated by the positive electrode–electrolyte reaction. ARC studies on the positive electrode material in presence of our reference electrolyte show an inhibiting effect of the conducting salt LiPF6 towards the oxidation of the organic based electrolyte by released oxygen. X-ray diffraction measurements were performed to study the thermal decomposition behaviour of the positive active material. Both the blend system and the single components, NCM and LMO, were investigated at different temperatures. A significant phase transformation from the hexagonal layered to a cubic structure as well as various reduction products could be identified. Finally, the thermal behaviour of the NCM/LMO-blend and its single phases, NCM and LMO, at different states of charge (SOC) was investigated. Therefore, detailed investigations based on differential scanning calorimetry (DSC) and cyclic voltammetry (CV) were performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.