Abstract

To assess a model combining OCT angiography (OCTA) and OCT parameters to predict the severity of paracentral visual field (VF) loss in primary open-angle glaucoma (POAG). Cross-sectional study. Forty-four patients with POAG and 42 control subjects underwent OCTA and OCT imaging with a swept-source OCT device. The circumpapillary microvasculature was quantified for vessel density (cpVD) and flow (cpFlow) after delineation of Bruch's membrane opening and removal of large vessels. Retinal nerve fiber layer thickness (RNFLT) and Bruch's membrane opening-minimum rim width (BMO-MRW) were measured from structural OCT. Paracentral total deviation (PaTD) was defined as the average of the total deviation values within the central 10 degrees on Humphrey VF testing (24-2) for upper and lower hemifields. The OCT and OCTA parameters were measured in the affected hemisphere corresponding to the hemifield with lower PaTD for POAG patients. Models were created to predict affected PaTD based on RNFLT alone; RNFLT and BMO-MRW; OCTA alone; or RNFLT, BMO-MRW and OCTA parameters. The models were compared using coefficient of determination (r2) and Bayesian information criterion (BIC) score. Bayesian information criterion decrease of ≥6 indicates strong evidence for model improvement. Performance of models containing OCT and OCTA parameters in predicting PaTD. Patients with POAG and controls were similar in age and sex (65.9 ± 9.5 years and 38.4% male overall, P ≥ 0.56 for both). Average RNFLT, minimum RNFLT, average BMO-MRW, minimum BMO-MRW, cpVD, and cpFlow were all significantly lower (all P < 0.001) in the affected hemisphere in patients with POAG than in controls. In patients with POAG, the average mean deviation was -4.33 ± 3.25 dB; the PaTD of the affected hemifield averaged -4.55 ± 5.26 dB and correlated significantly with both OCTA and structural OCT parameters (r ≥ 0.43, P ≤ 0.004 for all). The model containing RNFLT, BMO-MRW, and OCTA parameters was superior in predicting affected PaTD (r2= 0.47, BIC= 290.7), with higher r2 and lower BIC compared with all 3 other models. A combined model of OCTA and structural OCT parameters can predict the severity of paracentral VF loss of the affected hemifield, supporting clinical utility of OCTA in patients with POAG with paracentral VF loss. Proprietary or commercial disclosure may be found after the references.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.