Abstract
A fast, sensitive and selective procedure employing a combination of microwave-assisted extraction (MAE) and solid phase extraction (SPE) was applied prior to liquid chromatographic identification and quantification of phenolic compounds in plant materials. MAE has been tested and optimized for the isolation of phenolic acids (gallic, protocatechuic, p-hydroxybenzoic, chlorogenic, vanilic, caffeic, syringic, p-coumaric, ferulic, sinapic, benzoic, m-coumaric, o-coumaric, rosmarinic, cinnamic acids) and 3,4-dihydroxybenzaldehyde, syringaldehyde, p-hydroxybenzaldehyde, and vanillin in various plants. The effects of experimental conditions on MAE efficiency, such as solvent composition, temperature, extraction time, have been studied. The extraction efficiencies were compared with those obtained by computer-controlled, two-step Soxhlet-like extractions. Plant extracts were purified and phenolic compounds were pre-concentrated using SPE on polymeric RP-105 SPE sorbent prior to HPLC analysis. Chromatographic separation was carried out on a Hypersil BDS C18 column using a mobile phase consisted of 0.3% (v/v) acetic acid in water (solvent A) and methanol (solvent B) at flow rate 0.6 ml min−1 and column temperature 30 °C with gradient elution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have