Abstract

The task of detecting vocal abnormalities is characterized by a small amount of available data for training, as a consequence of which classification systems that use low-dimensional data are the most relevant. We propose to use LASSO (least absolute shrinkage and selection operator) and BSS (backward stepwise selection) methods together to select the most significant features for the detection of vocal pathologies, in particular amyotrophic lateral sclerosis. Features based on fine-frequency cepstral coefficients, traditionally used in speech signal processing, and features based on discrete estimation of the autoregressive spectrum envelope are used. Spectral features based on the autoregressive process envelope spectrum are extracted using the generative method, which involves calculating a discrete Fourier transform of the report sequence generated using the autoregressive model of the input voice signal. The sequence is generated by the autoregressive model so as to account for the periodic nature of the Fourier transform. This improves the accuracy of the spectrum estimation and reduces the spectral leakage effect. Using LASSO in conjunction with BSS allowed us to improve the classification efficiency using a smaller number of features as compared to using the LASSO method alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.