Abstract
High temperature creep behavior of carbide precipitation strengthened Fe-15 Cr-25 Ni alloys with different carbon content have been investigated. Grain boundary carbides obstruct dislocation annihilation at the grain boundary and, therefore, increase the dislocation density near the grain boundary. This gives rise to formation of a hard grain boundary region and significantly increase creep resistance of the alloy. The grain boundary precipitation strengthening and combined matrix/boundary strengthening are modeled following the concept of hard-soft composite structure, and a unified creep equation is derived by taking account of back stress from intergranular carbide particles, “boundary obstacle stress”. The models and analysis show that grain boundary precipitation strengthening is predominant for soft matrix but decreases with the increase of matrix strength, indicating the existence of coupled matrix/boundary strengthening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.