Abstract

Biochar-oxalic acid composite application (BCOA) have shown to be efficient in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but the functional degraders and the mechanism of improving biodegradation remains unclear. In this study, with the help of stable isotope probing technology of phenanthrene (Phe), we determined that BCOA significantly improved Phe mineralization by 2.1 times, which was ascribed to the increased numbers and abundances of functional degraders. The BCOA increased contents of dissolved organic carbon and available nutrients and decreased pH values in soil, thus promoting the activity, diversity and close cooperation of the functional Phe-degraders, and stimulating their functions associated with Phe degradation. In addition, there is a relay activity among more and diverse functional Phe-degraders in the soil with BCOA. Specifically, Pullulanibacillus persistently participated in Phe-degradation in the soil with BCOA throughout the incubation period. Moreover, Pullulanibacillus, Blastococcus, Alsobacter, Ramlibacter, and Mizugakiibacter were proved to be potential Phe-degraders in soil for the first time. The specific Phe degraders and their relay and cooperation activity in soils as impacted by BCOA were first identified with DNA-stable isotope probing technology. Our findings provided a novel perspective to understand the efficient degradation of PAH in the BCOA treatments, revealed the potential of soil native microbes in the efficient bioremediation of PAH-contaminated natural soil, and provided a basis for the development of in-situ phytoremediation technologies to remediate PAH pollution in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call