Abstract
Functionally Graded Material (FGM) is a heterogeneous composite material that consists of a gradient compositional variation of the constituent materials from one surface of the material to the other. These continuous changes result in gradient material properties. Since ceramic has good heat resistance and metal has high strength, FGM made by ceramic and metal can work at super high temperatures or under a high-temperature-difference field. It is a primary to reduce thermal stress by selection of different effective material properties for the intermediate composition of the EGM and to prevent destruction by thermal stress. FGM is manufactured at a high temperature and then residual thermal stresses are produced during cooling to room temperature. In this paper, the elastic-plastic thermal stresses induced in a ceramic-metal FGM plate (FGP) taking the fabrication process into consideration are discussed. The region near the heat resistant surface is produced by metal particle reinforced ceramic while the region near the cooling surface is vice versa. As the metal and the ceramic near the middle region of the FGM are perfectly mixed, it is impossible to consider the particle-reinforced material. In this study, the FGP is divided into three regions. First, the region near the cooling surface is metal rich and then the metal is considered as a matrix while the ceramic is considered as particles. Second, the region near the heat resistant surface is ceramic rich so that the ceramic is considered as a matrix while the metal is considered as particles. Third, in the middle part between the previous two regions the metal and ceramic are perfectly mixed. In the third region macroscopic analysis is considered because the difference between the volume fractions of the ceramic and the metal is small and it is difficult to consider one of them as a matrix or particles. The effects of the distribution parameter of the composition and the fabrication temperature on the thermal stress variations are discussed.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have