Abstract

Abstract Radiance measurements from satellites offer the opportunity to retrieve atmospheric variables at much higher spatial resolution than is presently afforded by in situ measurements (e.g., radiosondes). However, the accuracy of these retrievals is crucial to their usefulness, and the ill-posed nature of the problem precludes a straightforward solution. A number of retrieval approaches have been investigated, including empirical techniques, coupling with numerical weather prediction models, and data analysis techniques such as regression. In this paper, artificial neural networks are used to retrieve vertical temperature and dewpoint profiles from infrared and microwave brightness temperatures from a polar-orbiting satellite. This approach allows retrievals to be performed even in cloudy conditions—a limitation of infrared-only retrievals. In a direct comparison of this technique with results from the operational Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATO...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.