Abstract

Anti-apoptotic and pro-migratory phenotypes are hallmarks of neoplastic diseases, including primary brain malignancies. In this work, we examined whether reprogramming of the apoptotic and migratory machineries through a multi-targeting approach would induce enhanced cell death and enhanced inhibition of the migratory capacity of glioblastoma cells. Preclinical testing and molecular analyses of combined inhibition of Bcl-2/Bcl-xL and RAC1 were performed in established, primary cultured and stem-like glioblastoma cell systems. We found that the combined inhibition of Bcl-2/Bcl-xL and RAC1 resulted in synergistic pro-apoptotic and anti-migratory effects in a broad range of different glioblastoma cells. At the molecular level, we found that RAC1 inhibition led to a decreased expression of the deubiquitinase Usp9X, followed by a decreased stability of Mcl-1. We also found that the combined inhibition led to a significantly decreased migratory activity and that tumor formation of glioblastoma cells on chorion allantoic membranes of chicken embryos was markedly impaired following the combined inhibition. Our data indicate that concomitant inhibition of RAC1 and Bcl-2/Bcl-xL induces pro-apoptotic and anti-migratory glioblastoma phenotypes as well as synergistic anti-neoplastic activities. The clinical efficacy of this inhibitory therapeutic strategy warrants further evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call